Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 29(41): 62561-62578, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35399132

RESUMO

This paper presents an integrated framework in which an air quality dispersion model is combined with an economic dispatch model to address the environmental tradeoffs of a cost-optimized fuel allocation strategy. A unit commitment dispatch model was developed to re-allocate fuel between power generation and desalination plants. Then, an air quality dispersion model was run for a 1-year period to simulate the spatiotemporal transport of pollutants and the possible formation of air pollution hotspots. The results showed that optimizing fuel allocation can reduce the associated fuel cost by as much as 16.5% of the total cost (1.08 billion USD). The optimized fuel allocation approach resulted in reducing the base case emissions of NOx, SO2, CO, and PM10 by 25%, 4.6%, 3.1%, and 7.6%, respectively. However, the air quality impact of the optimized fuel allocation scheme was not as favorable. The 1-h-averaged maximum concentration of SO2 increased, and NOx concentrations were slightly above the allowable limits. Although fewer pollutants were emitted over the study period in the optimized fuel allocation case, the variability in how fuel was allocated between power and desalination plants concentrated emissions near residential areas. As a result of this trend, the maximum 1-h concentrations of all pollutants increased, with increases ranging from 1% for CO to 29% for PM10. In addition, the total number of hourly SO2 concentration violations increased dramatically, leading to additional hotspot areas. Therefore, the effectiveness of any environmental-economic fuel dispatch strategy should be tested based on additional indicators such as the allowable limits of pollutant concentrations and not exclusively the overall emissions of the system. This approach could promote the selection of the most economic fuel dispatch method while simultaneously considering regional air quality impacts.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Monitoramento Ambiental/métodos , Material Particulado/análise , Água
2.
Artigo em Inglês | MEDLINE | ID: mdl-27171101

RESUMO

The Energy Policy Act of 2005 and the Energy Independence and Security Act (EISA) of 2007 were enacted to reduce the U.S. dependency on foreign oil by increasing the use of biofuels. The increased demand for biofuels from corn and soybeans could result in an increase of nitrogen flux if not managed properly. The objectives of this study are to estimate nitrogen flux from energy crop production and to identify the catchment areas with high nitrogen flux. The results show that biofuel production can result in an increase of nitrogen flux to the northern Gulf of Mexico from 270 to 1742 thousand metric tons. Using all cellulosic (hay) ethanol or biodiesel to meet the 2022 mandate is expected to reduce nitrogen flux; however, it requires approximately 25% more land when compared to other scenarios. Producing ethanol from switchgrass rather than hay results in three-times more nitrogen flux, but requires 43% less land. Using corn ethanol for 2022 mandates is expected to have double the nitrogen flux when compared to the EISA-specified 2022 scenario; however, it will require less land area. Shifting the U.S. energy supply from foreign oil to the Midwest cannot occur without economic and environmental impacts, which could potentially lead to more eutrophication and hypoxia.


Assuntos
Agricultura , Biocombustíveis , Eutrofização , Ciclo do Nitrogênio , Nitrogênio , Produtos Agrícolas , Meio Ambiente , Etanol , Modelos Teóricos , Poaceae , Estados Unidos , Zea mays
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...